Pointed $k$-surfaces

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Embedding Pointed Curves in K3 Surfaces

Let D be a smooth projective curve of genus g over an algebraically closed field of characteristic zero. Let Mg denote the moduli stack of such curves. Let (S, h) be a polarized K3 surface of genus g, i.e., h is ample and primitive with h2 = 2g − 2. Let Fg denote the moduli stack of such surfaces. Now suppose D ⊂ S with [D] = h; let Pg denote the moduli space of such pairs (S,D), φg : Pg → Mg t...

متن کامل

k-NORMAL SURFACES

Following Matveev, a k-normal surface in a triangulated 3-manifold is a generalization of both normal and (octagonal) almost normal surfaces. Using spines, complexity, and Turaev-Viro invariants of 3-manifolds, we prove the following results: • a minimal triangulation of a closed irreducible or a bounded hyperbolic 3-manifold contains no non-trivial k-normal sphere; • every triangulation of a c...

متن کامل

Between K 3 Surfaces

Let X be a K3 surface which is intersection of three (i.e. a net P) of quadrics in P. The curve of degenerate quadrics has degree 6 and defines a natural double covering of P ramified in this curve which is again a K3. This is a classical example of a correspondence between K3 surfaces which is related with moduli of sheaves on K3’s studied by Mukai. When general (for fixed Picard lattices) X a...

متن کامل

k–MINIMAL TRIANGULATIONS OF SURFACES

A triangulation of a closed surface is k-minimal (k ≥ 3) if each edge belongs to some essential k-cycle and all essential cycles have length at least k. It is proved that the class of k-minimal triangulations is finite (up to homeomorphism). As a consequence it follows, without referring to the Robertson-Seymour’s theory, that there are only finitely many minor-minimal graph embeddings of given...

متن کامل

Families of K 3 surfaces

J. Algebraic Geom. 7 (1998), no. 1, 183–193. Richard E. Borcherds † Mathematics department, Evans Hall, 3840, UC Berkeley, CA 94720-3840 D.P.M.M.S., 16 Mill Lane, Cambridge CB2 1SB, UK email: [email protected] Ludmil Katzarkov M.S.R.I., 1000 Centennial Drive, Berkeley, CA 94720 Department of Mathematics, UC Irvine, Irvine, CA 92697-3875 email: [email protected] Tony Pantev ‡ Department of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin de la Société mathématique de France

سال: 2006

ISSN: 0037-9484,2102-622X

DOI: 10.24033/bsmf.2521